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A one-dimensional problem for a homogeneous, isotropic and thermoelastic half-space subjected to a moving 
plane of heat source on the boundary of the space, which is traction free, is considered in the context of Lord-
Shulaman model (L-S model) of thermoelasticity. The Laplace transform and eigenvalue approach techniques are 
used to solve the resulting non-dimensional coupled equations. Numerical results for the temperature, thermal 
stress, and displacement distributions are represented graphically and discussed. 
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1. Introduction 
 
 The coupling between thermal and strain fields gives rise to the coupled theory of thermoelasticity 
(CTE). During last few decades, the generalized theories of thermoelasticity involving finite speed of heat 
transportation in an elastic solid have been the center of active research to remove the paradox of infinite 
speed of heat propagation inherent in the dynamical coupled theory of thermoelasticity (CTE) developed by 
Biot (1956). The governing equations involved in these theories are of hyperbolic type because of the 
introduction of thermal relaxation time parameters. To eliminate these type of a shortcoming, various 
modified generalized thermoelasticity theories were proposed by Lord and Shulman (1967) (LS model), 
Green and Lindsay (1972) (GL model) and Green and Naghdi (1991; 1992; 1993) (GN models) based on 
“second sound” effects, i.e., propagation of heat as a wave like phenomenon. 
 In 1967, Lord and Shulman attempt to eliminate the paradox of infinite velocity of thermal 
disturbances inherent in the CTE. This model is based on a modified Fourier’s law but in addition a single 
relaxation time was considered. This theory was extended by Dhaliwal and Sherief (1980a) to include the 
anisotropic case. The uniqueness of the solution for this theory was proved under different conditions by 
Ignaczak (1979; 1982), by Dhaliwal and Sherief (1980b) and by Sherief (1987). In the L-S model, finite 
speed of thermal disturbance has been considered with thermal relaxation time. The heat conduction equation 
in this model is of hyperbolic type and is closely connected with the theories of second sound. 
 Green and Lindsay (1972) also proposed a theory of generalized thermoelasticity with two relaxation 
time parameters and modified both the energy equation and constitutive equations. The GL model admits 
second sound without violating Fourier’s law. Both the theories are structurally different, but one can be 
obtained as a particular case of the other. Various problems related to the above theories have been 
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investigated by Youssef (2006; 2009), Sherief and Megahed (1999), Sherief and Youssef (2004), Ezzat et al. 
(2001), Lahiri et al. (2010a; 2010b). 
 A recent theoretical development of this subject is due to Green and Naghdi (1991; 1992; 1993). 
Providing sufficient basic modifications in the governing equations Green and Naghdi developed a new 
general theory of thermoelasticity that permits treatment of a much wider class of heat flow problems. They 
divided their theory into three parts and referred as types I, II and III. The linearized version of constitutive 
equations of GN I (1991) is same as the classical thermoelasticity theory which is based on Fourier’s law, 
whereas the linearized version of GN II (1993) theory permits propagation of thermal waves at finite speed. 
In the GN-II model, the internal rate of production of entropy is assumed to be identical to zero, i.e., there is 
no dissipation of thermal energy and this theory is referred to as thermoelasticity without energy dissipation 
theory. In development of the GN III (1992) model, the constitutive equations are derived by including a 
thermal displacement gradient in addition to a temperature gradient among the constitutive variables. 
However, this model admits dissipation of energy in general. 
 Most of the thermoelasticity (generalized or coupled) problems have been solved by using the 
potential function. This method is not always suitable as discussed by Anwar and Sherief (1988) and Sherief 
(1993). Their discussion may be summarized by (I) the boundary and initial conditions for physical problems 
are directly related to the physical quantities under consideration and not to the potential function and (II) the 
solution of the physical problem in natural variables is convergent while other potential function 
representations are not convergent always. 
 The alternatives to the potential function approach are as follows (I) State-Space approach: This 
method is essentially an expansion in a series in terms of the coefficient matrix of the field variables in 
ascending powers and applying Caley-Hamilton theorem, which requires extensive algebra, and (II) 
Eigenvalue approach: This method reduces the problem on vector-matrix differential equation to an algebraic 
eigenvalue problems and the solutions for the field variables are achieved by determining the eigenvalues 
and the corresponding eigenvectors of the coefficient matrix. In the eigenvalue approach the physical 
quantities are directly involved in the formulating of the problem and as such the boundary and initial 
conditions can be applied directly. Body forces and/or heat sources are also accommodated in both the 
theories, cf. Das et al. (1997; 2009), Lahiri et al. (2010), Kar and Lahiri (2004) and Sarkar and Lahiri (2012). 
 Saleh (2005), Youssef (2006; 2009) studied some one-dimensional problems in thermoelasticity 
(generalized or coupled) including heat sources by the state space approach and generally in their models, 
heat sources included the Dirac delta function and Heavisides unit step function and consequently they 
obtained solutions easily by the state-space approach, but here we are interested in considering the heat 
source in any form and solve by the eigenvalue approach developed in Sarkar and Lahiri (2012). 
 In this work, we consider a one-dimensional problem for a half-space in the context of the L-S 
theory of generalized thermoelasticity with one relaxation time parameter subjected to a moving plane of 
heat source. The surface of the half-space is assumed to be traction free and subjected to the effects of a 
thermal shock. The main objective of this present paper is to study the above problem based on the LS theory 
with the help of the eigenvalue approach proposed by Sarkar and Lahiri (2012). See the Appendix for details. 
The inversion of the Laplace transform solutions are carried out numerically using Bellman method (Belman 
et al., 1966) and the obtained results are presented graphically. The effects of the moving heat source speed 
on temperature, stress and displacement are studied. 
 
2. Governing equations 
 
 For a homogeneous, isotropic elastic solid, the basic equations for the linear generalized theory of 
thermoelasticity with one relaxation time parameter proposed by Lord and Shulman (1967) in the absence of 
body forces are: 
 
(I) Equation of motion 
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(II) Heat conduction equation  
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(III) Stress–displacement–temperature relations  
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where i,j=1,2,3 refer to general coordinates. 
 
3. Formulation of the problem 
 
 We consider a homogenous, isotropic and thermoelastic half-space which fills the region,

� �:x 0 x� � � � � subjected to a moving plane of heat source on the bounding plane to the surface x 0� . 
The body is initially at rest and the surface x 0� is assumed to be traction free. The governing equations will 
be written in the context of the theory of thermoelasticity with one relaxation time parameter (LS model), 
when the body has no body forces. Clearly, this is a one-dimensional problem and all the state functions 
depend only on the space variable x and time variable t. The displacement components in this case are of the 
form  
 
  ( , ),x y zu u x t u u 0� � � . 

 
 We will use the Cartesian co-ordinates (x, y, z) and the components of the displacement  � �, ,iu u 0 0�
and write them as follows  
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 To transform the above equations in non-dimensional forms, we define the following non-
dimensional variables 
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 Equations (3.1)-(3.3) then reduce to the following non-dimensional forms (the asterisks are dropped 
for convenience) 
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 The space x 0�  is subjected to a moving plane of heat source of constant strength, releasing its 
energy continuously while moving along the positive direction of the x-axis with a constant velocity v. This 
moving heat source is assumed to be in the following non-dimensional form  
 
  ( , ) ( )0Q x t Q x vt� �   (3.7) 
 
where 0Q  is a constant of heat sources and (.)� is the Dirac delta function. 
 
4. Formulation and solution of the vector-matrix differential equation 
 
 Using the Laplace transform defined for any function ( )f t  as follows  
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where s is the transform parameter such that Re( )s 0  and applying the above transform to both sides of 
Eqs (3.4)-(3.6) and assuming that all the initial state functions along with their derivatives with respect to t 
are equal to zero, we obtain 
 

  
2

2
2

d u ds u
dxdx
�

�  , (4.1) 

 

  � � � � ,
s2 x02 v

2
Q 1 sd dus s e

dx vdx


 �� � 	� 
 � � 
 � � �
� �

 (4.2) 

 



Interactions due to moving heat sources in generalized … 819 

  

du
dx

� � � .              (4.3) 

 
 The resulting Eqs (4.1) and (4.2) can be written in the form of a vector-matrix differential equation 
as follows, see Sarkar and Lahiri (2012) and Appendix for details 
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 The eigenvectors iX  of the coefficient matrix � �A s corresponding to the eigenvalues , ( )i i 1 1 4� �  of 
A (x, s) respectively, may be found as  
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 Following the eigenvalue approach, see the Appendix for details, the field variables can be written 
as  
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 Using Eqs (4.11) and (4.12) in Eq.(4.3), we obtain the stress component ( , )x s�  as  
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5. Application 
 
Unit step increase in temperature of the boundary of an elastic half-space. 
 
 We consider a homogeneous, isotropic elastic solid occupying the half space x 0� . The initial 
conditions of the problem are assumed to be homogeneous. It is assumed that the boundary plane x 0� of the 
half space is subjected to a unit step increase in temperature which is traction free. Therefore the boundary 
conditions in the non-dimensional forms can be written as: 
 
(a)  mechanical boundary condition that the bounding plane to the surface x 0�  has no traction anywhere, 

so we have  
 
  ( , ) ,0 t 0� �  
 
(b) the thermal boundary condition is  
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where 0�  is the constant temperature and H( )t is the Heaviside unit step function. The transformed 
boundary conditions, for t 0  are  
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 Using the boundary conditions Eq.(5.1) and Eq.(5.2) in Eqs (4.12) and (4.13), respectively, and after 
some simple computations, we get the constants ,1 2A A  in the following form 
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 Equations (4.11)-(4.13) give the complete solution of the problem in the Laplace transform 
domain.  
 
6. Numerical example and discussions 
 
 The Laplace inversion of the expressions given in Eqs (4.11)-(4.13) for displacement, 
temperature and stress respectively in the space-time domain are very complex and we prefer to develop 
an efficient computer programme for the inversion of these transforms. For this inversion of the Laplace 
transform, we follow the method of Bellman et al. (1966). The computations for the field variables are 
carried out for different values of x, three values of velocity, namely v=0.1,0.2,0.3 and for the time 
instants  
 

  1 . ,   . ,   . ,   . ,2 3 4t 0 025775 t 0 138382 t 0 352509 t 0 693147� � � �  
 

  . ,  . ,  .5 6 7t 1 21376 t 2 04612 t 3 67119� � � ,  
 
which are also the roots of the Legendre polynomial of degree seven, vide Bellman et al. (1966). A copper 
material is chosen for the purpose of numerical evaluations. The value of the non-dimensional constants � as 
well as the other constants are taken from Saleh (2005) as (in SI units)  
 
  . , . , . , .0 0 00 0168 0 05 5 0 Q 10� � � � � � �  
 
 Using the cubic spline formulation the computed values of the field variables are then plotted in 
several graphs (see Figs 1-12) for different values of the space variable x and for values of time t taking three 
values of v. From Figs 1–12, we observe the following results: 
 
(i) Figures 1–2 exhibit the variation of displacement against time t. Figure 1 shows that the displacement u 

attains its maximum value near 1t t�  for x=0.2 and then decreases rapidly in 0�t�0.25. Figure 2 shows 
that the displacement u attains its minimum value near 1t t�  for x=0.2 and then increases rapidly in 
0�t�0.27 and then it shows no significant changes for x�0.28. 
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Fig.1. Displacement distribution against time t. 
 

 
 

Fig.2. Displacement distribution against t. 
 
(ii) Figures 3-4 exhibits the variation of temperature with time t for different values of x and v. In Fig.3, it is 

observed that the temperature � attains its maximum value near 1t t�  for x=0.3 and then decreases as 
time t increases for fixed x and v. The curves are smoother in the case x=0.3 than in the case x=0.1,0.2. 
From Fig.4, we see that the temperature � attains its maximum value near 1t t�  for x=0.2 and then 
decreases as time t increases for fixed x and v. In 0�t�1.2, � increases as the velocity v increases for 
fixed x (see Fig.4). 
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Fig.3. Temperature distribution against time t. 
 

 
 

Fig.4. Temperature distribution against time t. 
 
(iii) Figure 5 shows that there are no significant changes in 0�t�0.9 and then the stress decreases as time t 

increases and the numerical value of stress is maximum near t=2.8 for x=0.2, v=0.3. The curves are 
smoother in the case x=0.3 than in the case x=0.1,0.2. Again the absolute value of stress is maximum 
near t=3.0 for x=0.6 and v=0.3 (see Fig.6). 
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Fig.5. Stress distribution against time t. 
 

 
 

Fig.6. Stress distribution against time t. 
 
(iv) Figure 7 shows that the numerical value of u increases as the velocity v increases for fixed; t its absolute 

value is maximum near x=0.1 when v=0.2 and 2t t� . From Fig.8 we see that the curves are smoother in 
the case 3t t�  than in the case ,4 5t t t�  for fixed value of v. In this case the numerical value of u 
increases as time t decreases when x and v are fixed. 
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Fig.7. Displacement distribution against distance x. 
 

 
 

Fig.8. Displacement distribution against distance x. 
 
(v) Figure 9 shows that the curves are smoother in the case 5t t�  than in the case ,6 7t t t� . For fixed x and 

v, � increases as time t decreases and attains the maximum value near x=0.1 when 6t t�  and v=0.2 
while in Fig.10 � increases as velocity v increases for fixed t and x and finally it attains the maximum 
value at x=0.1 for v=0.3 and 6t t� . 
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Fig.9. Temperature distribution against distance x. 
 

 
 

Fig.10. Temperature distribution against distance x. 
 
(vi) Figures 11-12 exhibits the variation of stress with time x for different values of t and v. In Fig.11, we see 

that � attains its maximum value x=0.1 when 7t t�  and v=0.2. The curves are smoother in the case 

1t t�  than in the case ,3 7t t t� . In Fig.12 stress � shows its compressive nature and in this case the 
numerical value of � increases as the velocity v decreases. 
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Fig.11. Stress distribution against distance x. 
 

 
 

Fig.12. Stress distribution against distance x. 
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7. Concluding remarks 
 
 We have investigated a one-dimensional dynamic response of a homogeneous isotropic and 
thermoelastic half-space subjected to a moving plane of heat sources in the context of the LS model of 
thermoelasticity. From the above discussions, we can arrive at the following conclusions: 
(1)  At a given instant, the non-zero values of non-dimensional temperature, displacement and stress are 

only in a bounded region. 
(2)  At x=vt, non-dimensional temperature attains its peak value once the time instant is given. 
(3)  The values of non-dimensional temperature, displacement and stress decrease as the moving heat source 

increases. 
(4)  The velocity of the heat sources has a significant role in all the field variables which are quite clear from 

Figs 6-9. 
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Nomenclature 
 
 PC  – non-dimensional speeds of purely elastic dilatational wave 
 TC  – non-dimensional speeds of purely thermal wave 
 Ec  – specific heat at constant strain 

 D – d
dx

'
 

 e  – cubical dilatation 
 H(.) – Heaviside unit step function 
 *K  – material constant characteristic of the theory 
 T  – absolute temperature  
 0T  – uniform reference temperature 

 iu  – displacement components 0

0

T T 1
T
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 T&  – coefficient of volume expansion 
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, thermoelastic coupling factor 

 ,� �  – Lame’ constants 
 �  – mass density 
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Appendix 
 
 Let us consider a system of simultaneous differential equations in the form  
 

  dv Av f
dx
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 Let us suppose that, the coefficient matrix Ã can be written as  
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and       � �, ,............., .T

1 2 nV V V V��  
 
 Here , ,...,1 2 n� � �  are the distinct eigenvalues of the coefficient matrix A� and , ,...,1 2 nV V V  are the 
eigenvectors corresponding to the eigenvalues , ,...,1 2 n� � � , respectively. Now pre-multiplying Eq.(A.1) by 

1V   and using Eq.(A.2), we obtain  
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1dy y V f
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� ��  (A.3) 

 
where, we define .1y V v v Vy� * �� � � �  
 Now we solve the system of Eq.(A.3). Clearly, this equation represents a set of n-decoupled ordinary 
differential equations. A typical r-th equation of this system may be taken as 
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dy y Q
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  (A.4) 

 
where,  � �� � � �= -th  raw  of    and  =1 1

r ijQ r V f V w �  (say).  

 

Then  = .
n

r ri i
i 1

Q w f
�
+

 
 
 The formal solution of Eq.(A.4) may be written as  
 

  .r r rx x x
r r ry c e e Q e dx� � �� 
 �  (A.5) 

 
So  
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n

r r
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�

* +� � �  (A.6) 

 
which is the required solution of Eq.(A.1).  
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